3.217 \(\int \frac{1}{\tan ^{\frac{7}{2}}(c+d x) \sqrt{a+i a \tan (c+d x)}} \, dx\)

Optimal. Leaf size=198 \[ \frac{23 i \sqrt{a+i a \tan (c+d x)}}{15 a d \tan ^{\frac{3}{2}}(c+d x)}-\frac{7 \sqrt{a+i a \tan (c+d x)}}{5 a d \tan ^{\frac{5}{2}}(c+d x)}+\frac{1}{d \tan ^{\frac{5}{2}}(c+d x) \sqrt{a+i a \tan (c+d x)}}+\frac{61 \sqrt{a+i a \tan (c+d x)}}{15 a d \sqrt{\tan (c+d x)}}-\frac{\left (\frac{1}{2}+\frac{i}{2}\right ) \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{\sqrt{a} d} \]

[Out]

((-1/2 - I/2)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/(Sqrt[a]*d) + 1/(d*Tan
[c + d*x]^(5/2)*Sqrt[a + I*a*Tan[c + d*x]]) - (7*Sqrt[a + I*a*Tan[c + d*x]])/(5*a*d*Tan[c + d*x]^(5/2)) + (((2
3*I)/15)*Sqrt[a + I*a*Tan[c + d*x]])/(a*d*Tan[c + d*x]^(3/2)) + (61*Sqrt[a + I*a*Tan[c + d*x]])/(15*a*d*Sqrt[T
an[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.559027, antiderivative size = 198, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 5, integrand size = 28, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.179, Rules used = {3559, 3598, 12, 3544, 205} \[ \frac{23 i \sqrt{a+i a \tan (c+d x)}}{15 a d \tan ^{\frac{3}{2}}(c+d x)}-\frac{7 \sqrt{a+i a \tan (c+d x)}}{5 a d \tan ^{\frac{5}{2}}(c+d x)}+\frac{1}{d \tan ^{\frac{5}{2}}(c+d x) \sqrt{a+i a \tan (c+d x)}}+\frac{61 \sqrt{a+i a \tan (c+d x)}}{15 a d \sqrt{\tan (c+d x)}}-\frac{\left (\frac{1}{2}+\frac{i}{2}\right ) \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{\sqrt{a} d} \]

Antiderivative was successfully verified.

[In]

Int[1/(Tan[c + d*x]^(7/2)*Sqrt[a + I*a*Tan[c + d*x]]),x]

[Out]

((-1/2 - I/2)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/(Sqrt[a]*d) + 1/(d*Tan
[c + d*x]^(5/2)*Sqrt[a + I*a*Tan[c + d*x]]) - (7*Sqrt[a + I*a*Tan[c + d*x]])/(5*a*d*Tan[c + d*x]^(5/2)) + (((2
3*I)/15)*Sqrt[a + I*a*Tan[c + d*x]])/(a*d*Tan[c + d*x]^(3/2)) + (61*Sqrt[a + I*a*Tan[c + d*x]])/(15*a*d*Sqrt[T
an[c + d*x]])

Rule 3559

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[(a*(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n + 1))/(2*f*m*(b*c - a*d)), x] + Dist[1/(2*a*m*(b*c - a*d))
, Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[b*c*m - a*d*(2*m + n + 1) + b*d*(m + n + 1)*Tan
[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2
+ d^2, 0] && LtQ[m, 0] && (IntegerQ[m] || IntegersQ[2*m, 2*n])

Rule 3598

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[((A*d - B*c)*(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n + 1))/(f
*(n + 1)*(c^2 + d^2)), x] - Dist[1/(a*(n + 1)*(c^2 + d^2)), Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n
 + 1)*Simp[A*(b*d*m - a*c*(n + 1)) - B*(b*c*m + a*d*(n + 1)) - a*(B*c - A*d)*(m + n + 1)*Tan[e + f*x], x], x],
 x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && LtQ[n, -1]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 3544

Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[
(-2*a*b)/f, Subst[Int[1/(a*c - b*d - 2*a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{1}{\tan ^{\frac{7}{2}}(c+d x) \sqrt{a+i a \tan (c+d x)}} \, dx &=\frac{1}{d \tan ^{\frac{5}{2}}(c+d x) \sqrt{a+i a \tan (c+d x)}}+\frac{\int \frac{\sqrt{a+i a \tan (c+d x)} \left (\frac{7 a}{2}-3 i a \tan (c+d x)\right )}{\tan ^{\frac{7}{2}}(c+d x)} \, dx}{a^2}\\ &=\frac{1}{d \tan ^{\frac{5}{2}}(c+d x) \sqrt{a+i a \tan (c+d x)}}-\frac{7 \sqrt{a+i a \tan (c+d x)}}{5 a d \tan ^{\frac{5}{2}}(c+d x)}+\frac{2 \int \frac{\sqrt{a+i a \tan (c+d x)} \left (-\frac{23 i a^2}{4}-7 a^2 \tan (c+d x)\right )}{\tan ^{\frac{5}{2}}(c+d x)} \, dx}{5 a^3}\\ &=\frac{1}{d \tan ^{\frac{5}{2}}(c+d x) \sqrt{a+i a \tan (c+d x)}}-\frac{7 \sqrt{a+i a \tan (c+d x)}}{5 a d \tan ^{\frac{5}{2}}(c+d x)}+\frac{23 i \sqrt{a+i a \tan (c+d x)}}{15 a d \tan ^{\frac{3}{2}}(c+d x)}+\frac{4 \int \frac{\sqrt{a+i a \tan (c+d x)} \left (-\frac{61 a^3}{8}+\frac{23}{4} i a^3 \tan (c+d x)\right )}{\tan ^{\frac{3}{2}}(c+d x)} \, dx}{15 a^4}\\ &=\frac{1}{d \tan ^{\frac{5}{2}}(c+d x) \sqrt{a+i a \tan (c+d x)}}-\frac{7 \sqrt{a+i a \tan (c+d x)}}{5 a d \tan ^{\frac{5}{2}}(c+d x)}+\frac{23 i \sqrt{a+i a \tan (c+d x)}}{15 a d \tan ^{\frac{3}{2}}(c+d x)}+\frac{61 \sqrt{a+i a \tan (c+d x)}}{15 a d \sqrt{\tan (c+d x)}}+\frac{8 \int -\frac{15 i a^4 \sqrt{a+i a \tan (c+d x)}}{16 \sqrt{\tan (c+d x)}} \, dx}{15 a^5}\\ &=\frac{1}{d \tan ^{\frac{5}{2}}(c+d x) \sqrt{a+i a \tan (c+d x)}}-\frac{7 \sqrt{a+i a \tan (c+d x)}}{5 a d \tan ^{\frac{5}{2}}(c+d x)}+\frac{23 i \sqrt{a+i a \tan (c+d x)}}{15 a d \tan ^{\frac{3}{2}}(c+d x)}+\frac{61 \sqrt{a+i a \tan (c+d x)}}{15 a d \sqrt{\tan (c+d x)}}-\frac{i \int \frac{\sqrt{a+i a \tan (c+d x)}}{\sqrt{\tan (c+d x)}} \, dx}{2 a}\\ &=\frac{1}{d \tan ^{\frac{5}{2}}(c+d x) \sqrt{a+i a \tan (c+d x)}}-\frac{7 \sqrt{a+i a \tan (c+d x)}}{5 a d \tan ^{\frac{5}{2}}(c+d x)}+\frac{23 i \sqrt{a+i a \tan (c+d x)}}{15 a d \tan ^{\frac{3}{2}}(c+d x)}+\frac{61 \sqrt{a+i a \tan (c+d x)}}{15 a d \sqrt{\tan (c+d x)}}-\frac{a \operatorname{Subst}\left (\int \frac{1}{-i a-2 a^2 x^2} \, dx,x,\frac{\sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{d}\\ &=-\frac{\left (\frac{1}{2}+\frac{i}{2}\right ) \tanh ^{-1}\left (\frac{(1+i) \sqrt{a} \sqrt{\tan (c+d x)}}{\sqrt{a+i a \tan (c+d x)}}\right )}{\sqrt{a} d}+\frac{1}{d \tan ^{\frac{5}{2}}(c+d x) \sqrt{a+i a \tan (c+d x)}}-\frac{7 \sqrt{a+i a \tan (c+d x)}}{5 a d \tan ^{\frac{5}{2}}(c+d x)}+\frac{23 i \sqrt{a+i a \tan (c+d x)}}{15 a d \tan ^{\frac{3}{2}}(c+d x)}+\frac{61 \sqrt{a+i a \tan (c+d x)}}{15 a d \sqrt{\tan (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 1.28967, size = 191, normalized size = 0.96 \[ \frac{i \sqrt{\tan (c+d x)} \left (\sqrt{-1+e^{2 i (c+d x)}} \left (165 e^{2 i (c+d x)}-205 e^{4 i (c+d x)}+103 e^{6 i (c+d x)}-15\right )-15 e^{i (c+d x)} \left (-1+e^{2 i (c+d x)}\right )^3 \tanh ^{-1}\left (\frac{e^{i (c+d x)}}{\sqrt{-1+e^{2 i (c+d x)}}}\right )\right )}{15 \sqrt{2} d \left (-1+e^{2 i (c+d x)}\right )^{7/2} \sqrt{\frac{a e^{2 i (c+d x)}}{1+e^{2 i (c+d x)}}}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(Tan[c + d*x]^(7/2)*Sqrt[a + I*a*Tan[c + d*x]]),x]

[Out]

((I/15)*(Sqrt[-1 + E^((2*I)*(c + d*x))]*(-15 + 165*E^((2*I)*(c + d*x)) - 205*E^((4*I)*(c + d*x)) + 103*E^((6*I
)*(c + d*x))) - 15*E^(I*(c + d*x))*(-1 + E^((2*I)*(c + d*x)))^3*ArcTanh[E^(I*(c + d*x))/Sqrt[-1 + E^((2*I)*(c
+ d*x))]])*Sqrt[Tan[c + d*x]])/(Sqrt[2]*d*(-1 + E^((2*I)*(c + d*x)))^(7/2)*Sqrt[(a*E^((2*I)*(c + d*x)))/(1 + E
^((2*I)*(c + d*x)))])

________________________________________________________________________________________

Maple [B]  time = 0.073, size = 473, normalized size = 2.4 \begin{align*}{\frac{1}{60\,ad \left ( -\tan \left ( dx+c \right ) +i \right ) ^{2}}\sqrt{a \left ( 1+i\tan \left ( dx+c \right ) \right ) } \left ( 30\,i\sqrt{2}\ln \left ( -{\frac{1}{\tan \left ( dx+c \right ) +i} \left ( -2\,\sqrt{2}\sqrt{-ia}\sqrt{a\tan \left ( dx+c \right ) \left ( 1+i\tan \left ( dx+c \right ) \right ) }+ia-3\,a\tan \left ( dx+c \right ) \right ) } \right ) \left ( \tan \left ( dx+c \right ) \right ) ^{4}a-15\,\sqrt{2}\ln \left ( -{\frac{-2\,\sqrt{2}\sqrt{-ia}\sqrt{a\tan \left ( dx+c \right ) \left ( 1+i\tan \left ( dx+c \right ) \right ) }+ia-3\,a\tan \left ( dx+c \right ) }{\tan \left ( dx+c \right ) +i}} \right ) \left ( \tan \left ( dx+c \right ) \right ) ^{5}a-396\,i\sqrt{a\tan \left ( dx+c \right ) \left ( 1+i\tan \left ( dx+c \right ) \right ) }\sqrt{-ia} \left ( \tan \left ( dx+c \right ) \right ) ^{3}+15\,\sqrt{2}\ln \left ( -{\frac{-2\,\sqrt{2}\sqrt{-ia}\sqrt{a\tan \left ( dx+c \right ) \left ( 1+i\tan \left ( dx+c \right ) \right ) }+ia-3\,a\tan \left ( dx+c \right ) }{\tan \left ( dx+c \right ) +i}} \right ) \left ( \tan \left ( dx+c \right ) \right ) ^{3}a+244\,\sqrt{a\tan \left ( dx+c \right ) \left ( 1+i\tan \left ( dx+c \right ) \right ) }\sqrt{-ia} \left ( \tan \left ( dx+c \right ) \right ) ^{4}+16\,i\tan \left ( dx+c \right ) \sqrt{a\tan \left ( dx+c \right ) \left ( 1+i\tan \left ( dx+c \right ) \right ) }\sqrt{-ia}-144\,\sqrt{a\tan \left ( dx+c \right ) \left ( 1+i\tan \left ( dx+c \right ) \right ) }\sqrt{-ia} \left ( \tan \left ( dx+c \right ) \right ) ^{2}+24\,\sqrt{a\tan \left ( dx+c \right ) \left ( 1+i\tan \left ( dx+c \right ) \right ) }\sqrt{-ia} \right ) \left ( \tan \left ( dx+c \right ) \right ) ^{-{\frac{5}{2}}}{\frac{1}{\sqrt{a\tan \left ( dx+c \right ) \left ( 1+i\tan \left ( dx+c \right ) \right ) }}}{\frac{1}{\sqrt{-ia}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+I*a*tan(d*x+c))^(1/2)/tan(d*x+c)^(7/2),x)

[Out]

1/60/d*(a*(1+I*tan(d*x+c)))^(1/2)*(30*I*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(
1/2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c)+I))*tan(d*x+c)^4*a-15*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*
(1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c)+I))*tan(d*x+c)^5*a-396*I*(a*tan(d*x+c)*(1+I*tan(d*x+c)
))^(1/2)*(-I*a)^(1/2)*tan(d*x+c)^3+15*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/
2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c)+I))*tan(d*x+c)^3*a+244*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(-I*a)^(1/2)*t
an(d*x+c)^4+16*I*tan(d*x+c)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(-I*a)^(1/2)-144*(a*tan(d*x+c)*(1+I*tan(d*x+
c)))^(1/2)*(-I*a)^(1/2)*tan(d*x+c)^2+24*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(-I*a)^(1/2))/a/tan(d*x+c)^(5/2)
/(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)/(-tan(d*x+c)+I)^2/(-I*a)^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{i \, a \tan \left (d x + c\right ) + a} \tan \left (d x + c\right )^{\frac{7}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+I*a*tan(d*x+c))^(1/2)/tan(d*x+c)^(7/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(I*a*tan(d*x + c) + a)*tan(d*x + c)^(7/2)), x)

________________________________________________________________________________________

Fricas [B]  time = 3.09587, size = 1423, normalized size = 7.19 \begin{align*} \frac{\sqrt{2} \sqrt{\frac{a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt{\frac{-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}{\left (206 i \, e^{\left (8 i \, d x + 8 i \, c\right )} - 204 i \, e^{\left (6 i \, d x + 6 i \, c\right )} - 80 i \, e^{\left (4 i \, d x + 4 i \, c\right )} + 300 i \, e^{\left (2 i \, d x + 2 i \, c\right )} - 30 i\right )} e^{\left (i \, d x + i \, c\right )} + 15 \,{\left (a d e^{\left (8 i \, d x + 8 i \, c\right )} - 3 \, a d e^{\left (6 i \, d x + 6 i \, c\right )} + 3 \, a d e^{\left (4 i \, d x + 4 i \, c\right )} - a d e^{\left (2 i \, d x + 2 i \, c\right )}\right )} \sqrt{\frac{2 i}{a d^{2}}} \log \left (\frac{1}{4} \,{\left (i \, a d \sqrt{\frac{2 i}{a d^{2}}} e^{\left (2 i \, d x + 2 i \, c\right )} + \sqrt{2} \sqrt{\frac{a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt{\frac{-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}{\left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right )} e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}\right ) - 15 \,{\left (a d e^{\left (8 i \, d x + 8 i \, c\right )} - 3 \, a d e^{\left (6 i \, d x + 6 i \, c\right )} + 3 \, a d e^{\left (4 i \, d x + 4 i \, c\right )} - a d e^{\left (2 i \, d x + 2 i \, c\right )}\right )} \sqrt{\frac{2 i}{a d^{2}}} \log \left (\frac{1}{4} \,{\left (-i \, a d \sqrt{\frac{2 i}{a d^{2}}} e^{\left (2 i \, d x + 2 i \, c\right )} + \sqrt{2} \sqrt{\frac{a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt{\frac{-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}{\left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right )} e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}\right )}{60 \,{\left (a d e^{\left (8 i \, d x + 8 i \, c\right )} - 3 \, a d e^{\left (6 i \, d x + 6 i \, c\right )} + 3 \, a d e^{\left (4 i \, d x + 4 i \, c\right )} - a d e^{\left (2 i \, d x + 2 i \, c\right )}\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+I*a*tan(d*x+c))^(1/2)/tan(d*x+c)^(7/2),x, algorithm="fricas")

[Out]

1/60*(sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*(
206*I*e^(8*I*d*x + 8*I*c) - 204*I*e^(6*I*d*x + 6*I*c) - 80*I*e^(4*I*d*x + 4*I*c) + 300*I*e^(2*I*d*x + 2*I*c) -
 30*I)*e^(I*d*x + I*c) + 15*(a*d*e^(8*I*d*x + 8*I*c) - 3*a*d*e^(6*I*d*x + 6*I*c) + 3*a*d*e^(4*I*d*x + 4*I*c) -
 a*d*e^(2*I*d*x + 2*I*c))*sqrt(2*I/(a*d^2))*log(1/4*(I*a*d*sqrt(2*I/(a*d^2))*e^(2*I*d*x + 2*I*c) + sqrt(2)*sqr
t(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*(e^(2*I*d*x + 2*I*
c) + 1)*e^(I*d*x + I*c))*e^(-I*d*x - I*c)) - 15*(a*d*e^(8*I*d*x + 8*I*c) - 3*a*d*e^(6*I*d*x + 6*I*c) + 3*a*d*e
^(4*I*d*x + 4*I*c) - a*d*e^(2*I*d*x + 2*I*c))*sqrt(2*I/(a*d^2))*log(1/4*(-I*a*d*sqrt(2*I/(a*d^2))*e^(2*I*d*x +
 2*I*c) + sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1
))*(e^(2*I*d*x + 2*I*c) + 1)*e^(I*d*x + I*c))*e^(-I*d*x - I*c)))/(a*d*e^(8*I*d*x + 8*I*c) - 3*a*d*e^(6*I*d*x +
 6*I*c) + 3*a*d*e^(4*I*d*x + 4*I*c) - a*d*e^(2*I*d*x + 2*I*c))

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+I*a*tan(d*x+c))**(1/2)/tan(d*x+c)**(7/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.31121, size = 196, normalized size = 0.99 \begin{align*} \frac{2 \, \sqrt{-2 \,{\left (i \, a \tan \left (d x + c\right ) + a\right )} a + 2 \, a^{2}} a^{4} \log \left (\sqrt{i \, a \tan \left (d x + c\right ) + a}\right )}{-\left (i + 1\right ) \,{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{6} + \left (6 i + 6\right ) \,{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{5} a - \left (14 i + 14\right ) \,{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{4} a^{2} + \left (16 i + 16\right ) \,{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{3} a^{3} - \left (9 i + 9\right ) \,{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{2} a^{4} + \left (2 i + 2\right ) \,{\left (i \, a \tan \left (d x + c\right ) + a\right )} a^{5}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+I*a*tan(d*x+c))^(1/2)/tan(d*x+c)^(7/2),x, algorithm="giac")

[Out]

2*sqrt(-2*(I*a*tan(d*x + c) + a)*a + 2*a^2)*a^4*log(sqrt(I*a*tan(d*x + c) + a))/(-(I + 1)*(I*a*tan(d*x + c) +
a)^6 + (6*I + 6)*(I*a*tan(d*x + c) + a)^5*a - (14*I + 14)*(I*a*tan(d*x + c) + a)^4*a^2 + (16*I + 16)*(I*a*tan(
d*x + c) + a)^3*a^3 - (9*I + 9)*(I*a*tan(d*x + c) + a)^2*a^4 + (2*I + 2)*(I*a*tan(d*x + c) + a)*a^5)